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Motivated by mapping from a stochastic system with spatially random rates, we consider disordered non-
conserving free-fermion systems using a scaling procedure for the equations of motion. This approach dem-
onstrates disorder-induced localization acting in competition with the asymmetric driving. We discuss the
resulting implications for the original stochastic system.
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I. INTRODUCTION

The role of disorder in stochastic nonequilibrium systems
is a topic of much recent interest �see e.g., Refs. �1–6� and
references therein�. This is exemplified by studies of the
asymmetric simple exclusion process �ASEP�, a one-
dimensional �1D� lattice gas model exhibiting a phase tran-
sition for open boundary conditions. The effect of quenched
particle-disordered hop rates in this system was investigated
in, e.g., �7–9� and the case of quenched spatial disorder has
been clarified by a number of works �see, e.g., �2,10–12��
including via a linearization transformation and scaling ap-
proach �13�.

In this paper we study a related nonequilibrium model
with applications in catalysis—the partially asymmetric ex-
clusion process combined with deposition and evaporation of
dimers �or equivalently pair annihilation and creation�. Stud-
ies of the pure model, e.g., Refs. �14–16�, suggest that, un-
like the ASEP, for adsorption and desorption rates which do
not vanish in the thermodynamic limit, there is no steady-
state phase transition even with open boundary conditions
�17,18�. However, the effect of disorder on both steady-state
properties �such as the density� and dynamics is still of in-
terest.

Here we demonstrate that, for spatially disordered rates
obeying a particular condition, one can approach this prob-
lem via a powerful mapping to free-fermion systems. In the
pure case, the resulting free-fermion system can be treated by
Fourier and Bogoliubov transformations �14,19�. The sim-
plest disordered scenario, the case of a single defect, is
known to produce the stochastic analog of localized modes
�20�. One might also expect to make progress for the case of
dilution, by breaking the chain up into finite uniform sections
�compare the treatment of the diffusion-only problem in �21�;
a similar break-up into effective pure segments also occurs in
�5��. In this paper we are chiefly interested in more general
disordered cases where there is no translational invariance
and therefore one cannot utilize the usual Fourier and Bogo-
liubov transformations. However, work by Merz and Chalker

involving doubling the number of fermion operators �22� of-
fers the possibility of using a type of a localized Bogoliubov
transformation followed by numerical calculation. Another
potential way to make progress is to derive and work with
the linear dynamic equations and this is the approach pur-
sued in the present work.

Our scaling approach is based on a method developed by
Pimentel and Stinchcombe �23� to treat the equation of mo-
tion of a 1D Mattis-transformed Edwards-Anderson Heisen-
berg spin glass and later applied by the present authors to the
Cole-Hopf transformed ASEP �13�. Essentially, one looks at
the evolution of parameters after a b=2 decimation of the
equation of motion. For extended states the parameters are
found to evolve chaotically under the scaling whereas for
localized states they decay exponentially allowing the iden-
tification of a localization length. Application of this method
to the present problem contributes to understanding of disor-
dered free fermions as well as illustrating a potential way to
make progress with the disordered stochastic model.

The plan of the rest of the paper is as follows. In Sec. II
we define our model, introduce the quantum Hamiltonian
formalism and demonstrate the free-fermion reduction for a
particular choice of disorder. We also discuss the known pure
results. In Sec. III, we derive the coupled equations of mo-
tions for the disordered free-fermion case. Then, in Sec. IV
we exploit the fact that these equations are linear to apply
scaling techniques based on those in �13,23�. As in those
works, we find that disorder induces localization effects and
in Sec. V we tentatively discuss the consequences for the
original stochastic system. Finally, Sec. VI contains conclu-
sions and suggestions for future work.

II. MODEL AND MAPPINGS

Let us start by considering the pure partially asymmetric
exclusion process with dimer evaporation and deposition,
shown schematically in Fig. 1. Subject to the exclusion con-
straints, particles hop to the right �left� with rate p �q�, and
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FIG. 1. Partially asymmetric exclusion process with dimer
evaporation and deposition �pure model�. Filled circles indicate par-
ticles; open circles denote vacancies.
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pairs of particles are deposited �evaporated� with rate � ����.
This provides a simple model for adsorption-desorption pro-
cesses and catalytic surface reactions.

In the special case p+q=�+��, the system can be mapped
via a Jordan-Wigner transformation �24� and a Bogoliubov-
Valatin transformation �25,26� to a free-fermion problem and
hence solved exactly �14,15,19,27�. The results are of more
general significance since, by duality transformations and
spin rotations, the quantum Hamiltonian can also be mapped
to other stochastic systems �16,28�, including some which
are experimentally realizable �29�. A subcase is p=q=�=��,
which maps to the Ising model and so is well understood
�19�.

The aim of the present work is to study the spatially dis-
ordered version of this model, with rates pl, ql, �l, and �l� for
processes on the bond between sites l and l+1. In this section
we demonstrate that the mapping to free-fermions is still
valid in the case where pl+ql=�l+�l� for each l.

The generalized pair process parametrized by pl, ql, �l,
and �l� can be conveniently represented using the quantum
Hamiltonian formalism �30,31�. In this approach one defines
a probability vector �P�=�nPn �n� with �n� the basis vector
associated with the particle configuration n= �n1 ,n2 , . . . ,nL�
and Pn the probability measure on the set of all such con-
figurations. �P� obeys the normalization condition �s � P�=1
where �s � =�n�n� and �n �n��=�n,n�. Within this formalism the
master equation for the time evolution resembles a
Schrödinger equation

d

dt
�P�t�� = − H�P�t�� �1�

with

H = − �
l

�pl�l
−�l+1

+ + ql�l
+�l+1

− + �l�l
+�l+1

+ + �l��l
−�l+1

−

− 1
4 �pl + ql + �l + �l�� + 1

4 �− pl + ql + �l − �l���l
z

+ 1
4 �pl − ql + �l − �l���l+1

z + 1
4 �pl + ql − �l − �l���l

z�l+1
z � .

�2�

Here the “spin-flip” operators �± correspond to particle cre-
ation and annihilation processes while the projection opera-
tors �z are needed to account for the probability that configu-
rations do not change. Conservation of probability imposes
the condition

�s�H = 0. �3�

Note that the general four-parameter model defined by Eq.
�2� contains many other important models as subcases, e.g.,
the ASEP �ql=�l=�l�=0�, symmetric diffusion �pl=ql, �l

=�l�=0�, etc. Further progress depends on what boundary
terms are imposed and how tractable the resultant quantum
spin model is. In particular, a Jordan-Wigner transformation
to fermion operators cl

†, cl gives both an easily treatable qua-
dratic part �arising from �±�± and �z terms� and a more
difficult quartic part �from the �z�z terms�. The quartic terms
will clearly be zero for the special case

pl + ql = �l + �l� �4�

and this gives the disordered free-fermion model which will
be explored in more detail in the remainder of this paper.

For this particular case, we now outline the details of the
transformation to fermion operators �compare Grynberg et
al. �19� for the pure model�. Writing �z in terms of �+�− and
imposing periodic boundary conditions, Eq. �2� becomes

HFF = − �
l

�pl�l
−�l+1

+ + ql�l
+�l+1

− + �l�l
+�l+1

+ + �l��l
−�l+1

−

+ �pl−1 − pl + �l − �l−1� ��l
+�l

− − �l� . �5�

Then applying the usual Jordan-Wigner transformation �24�

�l
+ = cl

† exp	i��
j�l

cj
†cj
 , �6�

�l
− = exp	− i��

j�l

cj
†cj
cl, �7�

yields the Hamiltonian in terms of fermion operators1

HFF = �
l

�plclcl+1
† − qlcl

†cl+1 − �l�cl
†cl+1

† − 1� + �l�clcl+1

− �pl−1 − pl + �l − �l−1� �cl
†cl� . �8�

The study of the disordered free-fermion Hamiltonian �8� is
the central aim of this paper; we now digress to summarize
the known pure results.

In the pure case one can exploit translational invariance
via a Fourier transformation and then use a Bogoliubov-type
similarity transformation �25,26� �well defined only for � and
�� nonzero� to diagonalize the Hamiltonian. The details are
given in �14,19�; here we simply quote the resulting Hamil-
tonian:

HFF = �
k

�k	k
+	k, �9�

with spectrum

�k = � + �� + �� − ���cos k + i�p − q�sin k . �10�

The imaginary part of �k implies ballistic motion while the
real part indicates that excitations decay with time constant
��+��+ ��−���cos k�−1. For � and �� nonzero, the spectrum
is gapped giving exponentially fast kinetics. By mapping
back from this free-fermion model, one can obtain the
steady-state density profile for the original pure stochastic
problem. The result �19�


l =
1

1 + ���/�
, �11�

is in agreement with mean-field calculation �one can show
that the steady-state system is spatially uncorrelated�. Other
works have calculated dynamic correlation functions �14,15�,

1If the total number of fermions, �l�l
+�l

−=�lcl
†cl, is even, then the

fermion operators must obey cyclic boundary conditions; in the odd
subspace, anticyclic boundary conditions are required. See �19�.
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shock evolution �32�, persistence probability, etc. Note that
non-steady-state properties of the stochastic system can al-
ternatively be understood by mapping to the Glauber model
�33� and treating the asymmetric hopping as biased diffusion
of domain walls �34�.

In the disordered case where there is no translational in-
variance a different approach is required—in the next sec-
tion, we demonstrate how to derive the equations of motion
starting from the free-fermion Hamiltonian �8�.

III. EQUATIONS OF MOTION

Let us first consider the expectation value of a general
observable X, i.e.,

�X��t� = �s�X�P� , �12�

where we use angular brackets to denote this stochastic av-
erage over histories. Using the “Schrödinger equation” �1�
one sees that the time evolution of �X� is given by

��X�
�t

= ��H,X�� �13�

with �H ,X� the usual commutator.
For the free-fermion Hamiltonian �8� we can use the fer-

mion anti-commutation relations, together with the identity
�A ,BC�= �A ,BC−B�A ,C, to calculate the commutators
�cj ,H� and �cj

† ,H� and hence obtain coupled dynamic equa-
tions for the operators �in the Heisenberg representation�:

�cj

�t
= pj−1cj−1 + qjcj+1 − � j−1cj−1

† + � jcj+1
†

+ �pj−1 − pj + � j − � j−1� �cj , �14�

�cj
†

�t
= − pjcj+1

† − qj−1cj−1
† + � j−1� cj−1 − � j�cj+1

− �pj−1 − pj + � j − � j−1� �cj
†. �15�

Note that due to the non-Hermicity of H these equations are
not simply Hermitian conjugates of each other. The equa-
tions are linear thus raising the possibility of using scaling
techniques like those in �13,23�—this will be the subject of
the next section.

As a preliminary to this scaling approach, we first assume
that cj and cj

† can be written as superpositions of operators
with exponential time dependence:

cj = �
�

� j���e�t, �16�

cj
† = �

�

 j���e�t. �17�

Substituting into Eqs. �14� and �15� and equating compo-
nents with the same time dependence yields

�Ej − ��� j = − pj−1� j−1 − qj� j+1 + � j−1 j−1 − � j j+1,

�18�

�Ej + �� j = − pj j+1 − qj−1 j−1 + � j−1� � j−1 − � j�� j+1,

�19�

with Ej = �pj−1− pj +� j −� j−1� �.
Note that for the pure case we can carry out a Fourier

transformation by writing � j���=e−ikj�k,  j���=e−ikjk. As
expected, we then find that for each Fourier component, Eqs.
�18� and �19� have solutions with �=�k or �=−�−k, where
�k is the pure spectrum �10�. In other words the operators cj
and cj

† can be written as

cj = �
k

e−ikj��ke
�kt + �k�e

−�−kt� , �20�

cj
† = �

k

e−ikj�ke
�kt + k�e

−�−kt� , �21�

where

k = i�k
��

�
cot

k

2
, �22�

k� = − i�k�tan
k

2
. �23�

The Bogoliubov angle can be obtained from the relations
�22� and �23�; in the pure case this approach thus provides an
alternative route to direct transformation of the Hamiltonian
�8�.

As an aside, we remark that Eqs. �18� and �19� can also be
cast in the form of a transfer matrix mapping. Analyzing
products of disordered transfer matrices then provides a way
to investigate possible localization effects. This is a particu-
larly attractive approach for simple models such as binary
disorder. In the next section we develop instead a general
numerical scaling approach for arbitrary distributions of dis-
order.

IV. SCALING

A. Procedure

In the general disordered case it is not obvious how to
solve Eqs. �18� and �19� explicitly, but their form is reminis-
cent of an equation which appears in the disordered ASEP �in
a mean-field description� after a linearizing �Cole-Hopf�
transformation so we can develop a scaling method similar to
the one used in that case �13� �compare also the original
work of Pimentel and Stinchcombe �23��. For full generality
we must allow each coefficient to scale differently so we
perform a b=2 dilation of the system using decimation on
the following equations

�Ej − ��� j = − pj,j−1� j−1 − qj,j+1� j+1 + � j,j−1 j−1

− �̃ j,j+1 j+1, �24�
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�Ẽj + �� j = − p̃j,j+1 j+1 − q̃j,j−1 j−1 + � j,j−1� � j−1

− �̃ j,j+1� � j+1, �25�

where we have extended the notation for clarity. For ex-
ample, pj,j−1 denotes the coefficient of � j−1 in the expression
for � j. Even in the pure case, this may scale differently from
p̃j,j+1 which is the coefficent of  j,j+1 in the expression for  j.
In the rescaled equation for � j � j� the coefficient of � j−2

� j+2� is pj,j−2 �p̃j,j+2�. The resulting 10-parameter scaling
equations are rather involved and are displayed for conve-
nience in Appendix A.

We now test this scaling procedure on the pure model
�Sec. IV B� before applying it to the disordered problem
�Sec. IV C�.

B. Pure model

We here demonstrate how the scaling of the equations of
motion �24� and �25� reflects the known spectrum �k of the
pure model �10�. For definiteness we consider the case �
���, p�q throughout; the extension to other cases should
be straightforward, since they are related by duality or space
reflection.

1. Nonbiased case, p=q

For the pure case, if one starts with p= p̃=q= q̃, �= �̃, ��

= �̃�, and by implication E= Ẽ, then the relationships p=q,
p̃= q̃, �= �̃, and ��= �̃� are preserved under scaling so one
only needs to scale six independent parameters. We find two
distinct types of scaling behavior.

For 2�����2� the scaling parameters all evolve chaoti-
cally under scaling �see Fig. 2�. In contrast for ��2�� or

��2�, the “energies” E and Ẽ tend to constant values
whereas the rescaled rates r �i.e., p, q, etc.� tend rapidly to

zero inside an exponentially decaying envelope �see Fig. 3�,
i.e., r�l�� f�l�e−l/	, where l=2I is the distance between sites
�I is the number of iterations� and 	 is a localization length.
We also see this localized behavior for all nonreal �.

Just as in the scaling of the Cole-Hopf-transformed mean-
field ASEP �13� the localization length can be measured nu-
merically from the exponential decay of the parameters. In
Fig. 4 we plot the localization length obtained from the scal-
ing of p, as a function of real frequency � �localization
lengths obtained from the other rates are found to be identi-
cal�. These numerical results can be simply explained by
reference to the pure spectrum for the symmetric case. The
“allowed” band �real k� corresponds to the region 2����
�2�; here states are extended and the localization length is

FIG. 2. Evolution of parameters in Eqs. �24� and �25� under
b=2 decimation. Pure case with �=0.41 and starting parameter

values p= p̃=q= q̃=0.5, �= �̃=0.8, ��= �̃�=0.2, E= Ẽ=0.6. Graph
shows absolute magnitude of parameters against number of itera-
tions I; lines are provided as an aid to the eye. Chaotic behavior is
typical of scaling in the allowed band.

FIG. 3. Evolution of parameters in Eqs. �24� and �25� under
b=2 decimation. Pure case with �=0.39 and starting parameter

values p= p̃=q= q̃=0.5, �= �̃=0.8, ��= �̃�=0.2, E= Ẽ=0.6. Graph
shows absolute magnitude of parameters against number of itera-
tions I; lines are provided as an aid to the eye. Rate parameters
decay exponentially as a function of 2I, as expected outside the
allowed band.

FIG. 4. Localization length 	 versus �real� frequency � for pure
case with p=q=0.5, �=0.8, ��=0.2. 	 is effectively infinite in al-
lowed band 0.4���1.6. Crosses indicate data from numerical
scaling of rate p; dashed line is analytical prediction of Eq. �26�.
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infinite. Frequencies outside this band correspond to a com-
plex wave vector k+ i�, i.e., localized states with localization
length 	=1/�. Indeed, from �=�+��+ ��−���cos�k+ i�� we
can obtain an analytical expression for the localization length
on the real-� axis �k=0 or k=��:

	 = 	arccosh��� + � − �

�� − �
�
−1

. �26�

This expression is shown as a dashed line in Fig. 4 and
agreement with the numerics is excellent.

2. Biased case, pÅq

In the pure biased case the “allowed” values of � are
given by �k of Eq. �10� with k real—an ellipse in complex �k
space, see Fig. 5. For these values of � we again find, as
expected, that the scaling parameters all evolve chaotically
under scaling corresponding to extended states. Outside this

allowed ellipse we see localized states once more.
Inside the ellipse we see a different type of behavior—E

and Ẽ again tend to constant values, some of the rates scale
exponentially to zero, whereas others grow exponentially to
infinity �see Fig. 6�. We argue that in this region the system is
dominated by the ballistic motion and scales to the totally
asymmetric case. So if we start with p�q, then p scales to
infinity while q decays to zero.

In Figs. 7 and 8 we plot the localization lengths for p and
q along the principal axes of the �-space ellipse �again for
the case p�q�. As is evident from the discussion above, the
localization length for q is small and positive in all regions—
q is an irrelevant parameter under scaling. The localization
length for p is positive in the localized region outside the
ellipse, infinite on the allowed ellipse, and negative in the
ballistic region inside �refer again to Fig. 5�. The value of
this relevant localization length can again be understood ana-

(p − q)

−(p − q)

Imλk

2ε′ 2εε + ε′

Reλk

ballistic

localized

FIG. 5. Im �k versus Re �k for pure model �case p�q, �����.
Solid ellipse represents allowed spectrum given by Eq. �10�. Inside
the ellipse equations of motion scale to ballistic limit p /q→�;
outside of ellipse is localized region.

FIG. 6. Evolution of parameters in Eqs. �24� and �25� under b
=2 decimation �first few iterations�. Pure case with �=0.41 and
starting parameter values p= p̃=0.55, q= q̃=0.45, �= �̃=0.8, ��
= �̃�=0.2, E= Ẽ=0.6. Graph shows absolute magnitude of param-
eters against the number of iterations I; lines are provided as an aid
to the eye. Rates p, q̃, �, �� scale exponentially to infinity while p̃,

q, �̃, �̃� decay exponentially and “energies” E, Ẽ tend to constant
values. This is typical of ballistic behavior inside the allowed ellipse
�for case p�q�.

FIG. 7. Numerical localization lengths 	p, 	q as a function of
real frequency �Re for pure case with p=0.55, q=0.45, �=0.8, ��
=0.2. Note difference in scaling behavior for p and q. Lines are
provided as an aid to the eye.

FIG. 8. Numerical localization lengths 	p, 	q as a function of
complex frequency �=1+ i�Im for pure case with p=0.55,
q=0.45, �=0.8, ��=0.2. Note difference in scaling behavior for p
and q. Lines are provided as an aid to the eye.
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lytically by considering a complex wave vector in the disper-
sion relation.

C. Disordered model

Armed with this understanding of the pure case, we move
on to look at the effect of disorder on the free-fermion sys-
tem. There are obviously various different possible ways to
add disorder; here we mainly investigate the case where the
disorder is in � and �� with the rates chosen to maintain the
free-fermion condition for each bond �specifically � j�=1−� j,
pj = p, and qj =q, where p+q=1�. Once again, we consider in
turn the symmetric �p=q� and asymmetric �p�q� cases.

1. Nonbiased case, p=q

In Fig. 9 we show an example of the scaling behavior for
the case with pj =qj =0.5, � j drawn from a uniform distribu-
tion, and � j�=1−� j. The value of � corresponds to being in
the allowed band for the pure case �compare Fig. 2�. We find
that the rates evolve chaotically towards zero within an ex-
ponential envelope and so we can define a localization length
via r�l�� f�l�e−l/	. In Fig. 10 we plot the localization length
for the decay of p, averaged over realizations of disorder.
Localization is clearly seen for all values of � in the pure
band.

2. Biased case, pÅq

In Fig. 11 we plot the localization lengths for p and q
along the real frequency axis for a sample disordered case,
viz., pj =0.55, qj =0.45, � j drawn from a uniform distribution
and � j�=1−� j. The pure results are also shown for reference

�compare also Fig. 7�. In this case we see that disorder re-
duces the size of the allowed ellipse along the real-� axis,
i.e., it acts to increase the localized region at the expense of
the ballistic region. The results for �=1+ i�Im are essentially
the same as in the pure case �Fig. 8�.

This competition between disorder-induced localization
and driving is analogous to that arising in another non-
Hermitian Hamiltonian studied by Hatano and Nelson �35�.
Their work was motivated by the mapping between flux lines
in a �d+1�-dimensional superconductor and d-dimensional
bosons. A random potential in the bosonic problem arises
from the study of columnar defects in the superconductor.

For all cases with disorder only in � and ��, we find that
the localization length is altered along the real-� axis but

FIG. 9. Evolution of parameters in Eqs. �24� and �25� under b
=2 decimation. Disordered case with �=1.41 and starting param-
eter values pj,j−1= p̃j−1,j =qj−1,j = q̃j,j−1=0.5, � j,j−1= �̃ j−1,j =z, � j,j−1�

= �̃ j−1,j� =1−z, E= Ẽ= pj,j−1− pj+1,j −� j+1,j −� j,j−1� , where z is a ran-
dom variable drawn from a uniform distribution between 0.6 and
1.0. Graph shows absolute magnitude of parameters at site j0 �av-
eraged over 100 realizations of disorder� against the number of
iterations I; lines are provided as an aid to the eye. Rate parameters
decay exponentially as a function of 2I showing a clear localization
effect.

FIG. 10. Localization length for p scaling versus �real� fre-
quency for disordered case with p=q=0.5, � j =z, � j�=1−z, where z
is drawn from a uniform distribution between 0.6 and 1.0. Pure
results outside the band are also shown for comparison �dashed�. In
the disordered case, the localization length is finite everywhere ex-
cept �=1.

FIG. 11. Numerical localization lengths 	p, 	q as a function of
real frequency �Re for disordered case with p=0.55, q=0.45, � j

=z, � j�=1−z, where z is drawn from a uniform distribution between
0.6 and 1.0. Lines are provided as an aid to the eye. Pure results are
shown for comparison. Note the reduction of the ballistic region in
the disordered case.
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unchanged along the axis in the imaginary direction.2 How-
ever, the change in the position of the allowed band �where
the localization length is infinite� depends on the strength of
the driving p−q, see Fig. 12. We shall now consider some
tentative analytical ideas to quantify these disorder effects.

Recall that the pure spectrum is given by

�k = b0 − a0 cos k + i�p − q�sin k , �27�

with b0=��+� and a0=��−�. We seek to modify this to rep-
resent the effective spectrum of the disordered model. For
the case of disordered � and �� �with � j +� j�= p+q=1� then a
naive suggestion is

�k = b0 − a cos k + i�p − q�sin k , �28�

where a can, in principle, have both real and imaginary parts,
i.e.,

a = ã + i2� , �29�

with ã, � real. The imaginary part of a causes a rotation of
the allowed ellipse �see Fig. 13�; if ã�a0, then there is also
stretching or compression. In agreement with the numerical
localization length data, this form leaves the center of the
ellipse and the intersection with the �=b0 axis unchanged. It
also explains why any amount of disorder causes localization
in the p=q case �where the ellipse is a line along the real
axis� for all values of real frequency except �=1.

There is no a priori reason why the imaginary part of a
should have a positive sign so we naturally expect the pos-
sibility of both ±2�. Furthermore, we anticipate that ã is
related to the mean of ��−� and � is proportional to the
width of the distribution. In fact, comparisons of the obtained
localization lengths �e.g., see Fig. 12� with the prediction
from the dispersion relation �28� suggest that the scaling re-

sults cannot be described by unique values of ã, �. It appears
that what we measure in the numerical scaling procedure is
the average of 1 /	 for some range of values. Further work is
needed to check and quantify this hypothesis.

V. DISORDER EFFECTS IN STOCHASTIC SYSTEM

In this section we attempt to infer disorder effects in the
original stochastic hopping process by mapping back the re-
sults for the equivalent quantum free-fermion model. In par-
ticular, we are interested in disorder-induced changes to the
pure steady-state density �11�.

We argue from the previous section that one can crudely
characterize the effects of disorder in the evaporation and
deposition rates by the replacements ��→��± i�, �→�� i�
�a0→a0± i2��, where � is related to the width of the disorder
distribution. This gives two different effective Bogoliubov
angles �possibly connected to the doubling of fermionic de-
grees of freedom in the work of Merz and Chalker �22��.
Stochastic observables are presumably related to the average
of these two possibilities, but it is not yet clear what is the
appropriate function of �, �� to average over. Motivated by
the form of the Bogoliubov transformation �cf. Eqs. �22� and
�23�� and by comparisons with simulation, we suggest that
the ratio �� /� is the important quantity and hence define

	��

�

 =

1

2
	�� + i�

� − i�
+

�� − i�

� + i�

 . �30�

This then yields a disorder-averaged density


l =
1

1 + ����/��
, �31�

which is increased from the pure case by an amount propor-
tional to �2 �for small ��. Simulations on the stochastic
model �see Fig. 14� confirm a density shift proportional to
the square of the width of the distribution, i.e., the localiza-
tion in the disordered free-fermion model does appear to map
back to a density shift in the equivalent disordered stochastic
system. Further work is still needed to rigorously establish
this picture and to relate the value of � both to the details of

2Obviously disorder in p and q affects the imaginary-� direction
instead.

FIG. 12. Numerical localization length 	p as a function of real
frequency �Re for disordered cases with � j =z, � j�=1−z, where z is
drawn from a uniform distribution between 0.6 and 1.0. Results are
shown for a range of values of p and q as indicated by the legend.
Lines are provided as an aid to the eye.

(p − q)

−(p − q)

Imλk

b0

Reλk

FIG. 13. Schematic of effective disordered dispersion relation in
� space for �k=b0+ �a0+ i2��cos k+ i�p−q�sin k �solid line�. Inside
the ellipse equations of motion scale to ballistic limit p /q→�;
outside of ellipse is localized region. Pure case �k=b0+a0 cos k
+ i�p−q�sin k shown for comparison �dashed line�, intersects real
axis at b0±a0.
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the disorder distribution and to the numerical localization
data.

Similarly, from knowledge of the effective dispersion re-
lation for the disordered case, it should be possible to adapt
the pure treatment of �19� for both steady-state dynamic cor-
relation functions and non-steady-state properties. These
quantities typically contain time dependences of the form
e−Re �kt so any decrease in the effective spectral gap would be
expected to lead to a slowing down of the dynamics �as was
found for the ASEP in �13��.

VI. DISCUSSION

In this paper we have studied the effect of disorder on a
model consisting of the partially asymmetric exclusion pro-
cess combined with dimer evaporation and deposition. We
presented an exact mapping to an equivalent quantum system
and then employed a numerical scaling technique on the
quantum equations of motion. This provided a clear demon-
stration of disorder-induced localization acting in competi-
tion with the asymmetric driving. We discussed tentatively
how these localization effects are related to the observed
steady-state density shift in the original stochastic system;
exact details of the inverse transformation remain to be clari-
fied. The stochastic system is relatively robust to disorder
since particle pairs can be evaporated and/or deposited along
the whole length of the chain.

There is much scope for further work on this disordered
model. In particular, a more rigorous development of the
mapping from the disordered quantum model back to the
stochastic system is needed. This would permit the transla-
tion of numerical scaling results for different forms of disor-
der �including, for example, the case where all rates are dis-
ordered and � j +� j�= pj +qj is position dependent� into
quantitative statements about the effect on density and cor-
relation functions. As indicated at the end of Sec. V we
should also like to extend the discussion to dynamics.

Another open question relates to the effect of disorder in
the open-boundary case when the evaporation and deposition
rates scale with system size, i.e., they are proportional to 1/L
where L is the number of sites. In this case the interplay
between boundary and bulk effects is expected to give a
steady-state phase transition in the pure model—compare re-
cent work for a similar dimer model �36� and earlier results
for the case with adsorption and desorption of monomers
�37,38�. The addition of disorder to the latter pure monomer
model was recently considered in the context of minimal
models for intercellular transport �39�.
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APPENDIX: DISORDERED FREE-FERMION SCALING

Here we present scaling relations for the coupled free-
fermion equations of motion �24� and �25�:

�Ej − ��� j = − pj,j−1� j−1 − qj,j+1� j+1 + � j,j−1 j−1 − �̃ j,j+1 j+1,

�A1�

�Ẽj + �� j = − p̃j,j+1 j+1 − q̃j,j−1 j−1 + � j,j−1� � j−1 − �̃ j,j+1� � j+1.

�A2�

A b=2 decimation of these equations leads to

�Ej� − ��� j = − pj,j−2� � j−2 − qj,j+2� � j+2 + ��� j,j−2�  j−2

− ��̃� j,j+2�  j+2, �A3�

�Ẽj� + �� j = − p̃j,j+2�  j+2 − q̃j,j−2�  j−2 + ���� j,j−2� � j−2

− ���̃� j,j+2� � j+2, �A4�

with rescaled “energy” parameters

Ej� = Ej −
pj,j−1qj−1,j

Ej−1 − �
−

qj,j+1pj+1,j

Ej+1 − �
+

� j,j−1��̃j−1,j

Ẽj−1 + �
+

�̃ j,j+1� j+1,j�

Ẽj+1 + �
,

�A5�

Ẽj� = Ẽj −
q̃j,j−1p̃j−1,j

Ẽj−1 + �
−

p̃j,j+1q̃j+1,j

Ẽj+1 + �
+

� j,j−1� �̃ j−1,j

Ej−1 − �
+

��̃j,j+1� j+1,j

Ej+1 − �
,

�A6�

and the rescaled rates

FIG. 14. Simulation results showing density dependence on
width of �, �� distribution for range of p, q values �see legend� in a
system of size 1000. � j is drawn from a uniform distribution be-
tween 0.8−w and 0.8+w; � j� given by 1−� j. Dashed line is a
squared fit given by 
=
0+bw2 with b=0.05.
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pj,j−2� =

− 	 pj,j−1pj−1,j−2

Ej−1 − �
+

� j,j−1� j−1,j−2�

Ẽj−1 + �

 +

Aj

Ẽj� + �
	� j,j−1� pj−1,j−2

Ej−1 − �
+

q̃j,j−1� j−1,j−2�

Ẽj−1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A7�

qj,j+2� =

− 	qj,j+1qj+1,j+2

Ej+1 − �
+

�̃ j,j+1��̃j+1,j+2

Ẽj+1 + �

 −

Aj

Ẽj� + �
	��̃j,j+1qj+1,j+2

Ej+1 − �
+

p̃j,j+1��̃j+1,j+2

Ẽj+1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A8�

��� j,j−2� =

− 	 pj,j−1� j−1,j−2

Ej−1 − �
+

� j,j−1q̃j−1,j−2

Ẽj−1 + �

 +

Aj

Ẽj� + �
	� j,j−1� � j−1,j−2

Ej−1 − �
+

q̃j,j−1q̃j−1,j−2

Ẽj−1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A9�

��̃� j,j+2� =

− 	qj,j+1�̃ j+1,j+2

Ej+1 − �
+

�̃ j,j+1p̃j+1,j+2

Ẽj+1 + �

 −

Aj

Ẽj� + �
	��̃j,j+1�̃ j+1,j+2

Ej+1 − �
+

p̃j,j+1p̃j+1,j+2

Ẽj+1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A10�

p̃j,j+2� =

− 	��̃j,j+1�̃ j+1,j+2

Ej+1 − �
+

p̃j,j+1p̃j+1,j+2

Ẽj+1 + �

 −

Bj

Ej� + �	qj,j+1�̃ j+1,j+2

Ej+1 − �
+

�̃ j,j+1p̃j+1,j+2

Ẽj+1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A11�

q̃j,j−2� =

− 	� j,j−1� � j−1,j−2

Ej−1 − �
+

q̃j,j−1q̃j−1,j−2

Ẽj−1 + �

 +

Bj

Ej� + �	 pj,j−1� j−1,j−2

Ej−1 − �
+

� j,j−1q̃j−1,j−2

Ẽj−1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A12�

���� j,j−2� =

− 	� j,j−1� pj−1,j−2

Ej−1 − �
+

q̃j,j−1� j−1,j−2�

Ẽj−1 + �

 +

Bj

Ej� + �	 pj,j−1pj−1,j−2

Ej−1 − �
+

� j,j−1� j−1,j−2�

Ẽj−1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A13�

���̃� j,j+2� =

− 	��̃j,j+1qj+1,j+2

Ej+1 − �
+

p̃j,j+1��̃j+1,j+2

Ẽj+1 + �

 −

Bj

Ej� + �
	qj,j+1qj+1,j+2

Ej+1 − �
+

�̃ j,j+1��̃j+1,j+2

Ẽj+1 + �



1 −
AjBj

�Ej� − ���Ẽj� + ��

, �A14�

where
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Aj = 	 pj,j−1�̃ j−1,j

Ej−1 − �
−

qj,j+1� j+1,j

Ej+1 − �
−

� j,j−1p̃j−1,j

Ẽj−1 + �
+

�̃ j,j+1q̃j+1,j

Ẽj+1 + �

 , �A15�

Bj = 	−
� j,j−1� qj−1,j

Ej−1 − �
+

��̃j,j+1pj+1,j

Ej+1 − �
+

q̃j,j−1��̃j−1,j

Ẽj−1 + �
−

p̃j,j+1� j+1,j�

Ẽj+1 + �

 . �A16�

Note the difference in meaning between �� �the evaporation rate� and ���� �the scaled deposition rate�.
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